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Abstract. The J-matrix method of scattering is used to calculate the scattering S-matrix at the
set of energy eigenvalues of the full Hamiltonian matrix constructed from a finite set of square-
integrable basis functions. The S-matrix is then analytically continued in the complex energy
plane via a point-wise rational fraction scheme of Schlessinger. Numerical search techniques are
then used to locate the poles of the S-matrix, which are identified with the resonance energies.
Partial widths are easily calculated from the residues of the S-matrix at the designated complex
resonance energies.

1. Imtroduction

Recently, the authors introduced a simple method {1] for extracting resonance information
from the Harris energy eigenvalues and eigenvectors [2] resulting from the diagonalization
of the scattering Hamiltonian in a finite set of L? bases. The method is based on the
formalism of the J-matrix method of scattering [3-5] which finds the exact solutions to a
model multichannel scattering potential, ¥. The model potential is obtained from the given
potential, V, by restricting its infinite matrix representation in a complete L? basis to a finite
representation. The basis chosen in each channel « is either the Laguerre basis

¢ (r) = (ar) 2R 2L (B r) (1)
or the oscillator basis
GO () = (har) 2N 2L (22, )

In both cases, A, is a free-scale parameter, and L!(x) are the generalized Laguerre
polynomials of order #. In terms of this basis and the given potential V, the model potential
V is defined as

. Ny—1Ng—1 _
VR =" N 188 (8@ v gP)] (3)
n=0 m=0

where {|¢{™)}%2, is the orthogonal complement to the basis {|¢{)}32, in the ath channel
in the sense that (@%9%} = (¢% |5} = 8pm. This modelling procedure is analogous to the
approach of the R-matrix method of scattering which maodels the given scattering potential
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by a cut-off potential restricted to an inner configuration space [3]. Heller [6] has shown
that this approximation scheme, which is ever improvable by enlarging the representation,
does not lead to spurious resonances. Thus, the resonances that the J-matrix method yields
approximate, in a well defined fashion, real resonances.

The scheme for calculating resonance energies is based on the definition of resonances
as the poles of the S-matrix in the second sheet of the complex energy plane. The J-matrix
method allows the exact evaluation of the S-matrix at the Harris energy eigenvalues which
result from the diagonalization of the full Hamiltonian in the subspace where the model
potential V is non-zero. Since the real energy axis is in the domain of analyticity of the
S-matrix, these values can be analytically continued in the complex energy plane. Standard
numerical search routines can then be used to locate the poles of the §-matrix, which are
identified as the complex resonance energies, €,,r = 1, 2,.... Usually, each resonance is
parametrized by E,, the real resonance position, and I', the resonance total width, in the
following way:

.r
& =E —iz. (4)
For each resonance, the partial width I, associated with each channel «, can be extracted
from the residues of the S-matrix at the energy ¢,. This is possible because the S-matrix
has the form

T eiﬂ.,
Sex = Sgg, - IEGTE 3

In the neighbourhood of the €, [7]. Here S2E is the background part of the S-matrix which
behaves regularly at £ = €,, and 6, is a real phase.

The purpose of this paper is to show how to calculate the S-matrix at the Harris energy
eigenvalues and, subsequently, how to analytically continue it in the complex energy plane.
This turns out to be a non-trivial problem since the S-matrix is a product of two operators,
one having a zero and the other having a pole at the Harris energy eigenvalues. In section 2
we use the J-matrix method of scattering to derive the general expression for the S-matrix.
In section 3 we state a sufficient condition for the energy to be a resonance energy. This
turns out to be the vanishing of a function, G(E), derivable from the determinant of the
S-matrix. We find the values of G(E) at the Harris energy eigenvalues. In section 4 we
show how to calculate the diagonal elements of the multichannel S-matrix at the Harris
eigenvatues and how to derive from these elements the partial widths for each resonance.
In section 5 we explain how to apply the rational fraction scheme of Schiessinger [8] to
analytically continue G{E) and the diagonal elements of the $-matrix in the complex plane.
We also explain how to use some numerical search techniques to locate resonances in the
complex energy plane. In the last section we give results of the application of the proposed
method to finding the resonance energy and partial widths for model one- and three-channel
scattering problems.

2. The S-matrix in the scattering region
We consider the scattering of a structureless spinless particle by a target with M internal

states labelled by the threshold energies Ej, Es,..., Ey. We assume that the given
scattering potential, V%4, is short range. We also assume that the reference Hamiltonian of
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the projectile, Hy, may include, in addition to the /th partial wave kinetic energy operator,
the Coulomb term (z/r), that is,

1d  1g+1)
Hy=——-—+—" 4%
0T T24r2 * 2r? + r )
Thus, the multichannel Schriidinger equation for the given scattering problem is
M
D {[Ho ~ (E — Ep)lup + V¥ |¥pe) = 0. )
g=1
The matrix represeniation of the operator
J® = Hy - (E - Eq) ®)

is tridiagonal in the Laguerre basis if we choose v = 2] + 1, and in the oscillator basis if
we choose z =0 and v =1 + % Therefore, the Fourier-like coefficients {s®}2, of the
expansion of the sine-like eigenvector of Hy satisfy the three-term recursion relation

T 59 b g@sE 4 g s =0 9)
for n 2 1 and the initial two-term recursion relation

J{a} (af) + J(a} {a) =0. (10)
Here

JE(E) = (9T (E)|pE). (11)

The explicit solutions for the above recursion relations are already known [3, 5]. Similarly, it
has been shown [3] that a second solution {cg@}g;o of equation (8) with the initial condition

w
IR+ IRel = 5 o
250

are the coefficients of a vector that behaves asymptotically cosine-like. Here W is the
Wronskian of the regular and irregular solution of the ath channel potential-free Schrédinger
equation. The coefficients {c®, 5/}, have already been found explicitly and have been
tabulated {5, 9].

Equipped with these coefficients, we may find the exact solution to the Schrodinger
equation (7) but with V2, as given by equation (3), replacing V*. The vector Iraa (B)),
which describes the projectile entering the scattering region in channel o with momentum k
and exiting the region in channel 8 with momentum kg, can be expanded in the g-channel

basis {[¢r)}%2, as

(8} 8)
n (E) Cn (E)
WpalE)) = §:|¢<ﬁ’bf’“+§:1 SE) s Ra].(m
8 H_Nﬁfﬁ e F Pl

This suggested solution resembles that of the R-matrix method in that outside the range of
the cut-off potential the wavefunction is a linear combination of the sine-like and cosine-like
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solutions. Therefore, the Rpy is just the reactance matrix from which the S-matrix can be
constructed using the relation

S(E) = (1 —iR)™'(1 +iR) (14)

where R is the open-channel part of the reactance matrix R. Broad and Reinhardt [10,11]
have shown that K is a solution of the equation

S

AR=-8B (15)
where A and B are the open part of the matrices .4 and /8 which have the explicit forms

(oc) (c!)

ApalE) = e 4 g8, ((BYID,  (BY
Bo »\/]C: af Ng—1,Na—1 a—1,Ng m
(e} (ct) 1)
SNy=1 (B.a) (@ SNa
Bﬁa(E) J— aaﬁ + gNﬂ—l.N.,-l(E)JN —~1,N, (E)_\/—:-

The quantity g is the inverse of the total Hamiltonian matrix, and gg f), N.—1(E) is the
(Ng — 1, Ny — 1) element of the (8, &) submatrix of g. More expl1c1tly, this element can
be written as

Ne AW p@
(8.0} Np=lpt ™" Na=1l.pt
8 (B} =) ——————— a7
Np—1,Na~1 ; E,—E

where E, is a Harris energy eigenvalue and

DA 143
Ay o Ay

2 ) M)
A, AL AR AST LAY ) (18)

=1ut [IN7R) 1,nr Ot Ny—

is the associated Harris energy eigenvector, Here, N, = 3.°L N, is the dimension of the
Hamiltonian matrix. This is the same as the total number of L? functions used to diagonalize
the scattering Hamiltonian [9]. It is now straightforward to write the scattering S-matrix in
terms of the two matrices A and B as

=B +idy 1B -id). (19)

This equation is valid for real energies above the lowest channel threshold. In particular, S
has a well defined value even at the Harris energy eigenvalue despite the fact that A and B
are both singular at the Harris energy eigenvalue. This problem is solved in the following
sections.

3. The condition for resonance

Each element of the S-matrix is singular at the complex resonance energy ¢,. From
equation (19) it is clear that a necessary condition for resonance is that

det(f + i4) = 0. (20
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Since the two operators (B+i4) cannot both vanish at a point in the complex energy space,
a sufficient condition for resonance is

det(B + 1A

6By =83 o wE=e, 21)

det(B —iA)
This form for the condition for resonance has two favourable properties. First, G(E) has
a well defined value at the Harris energy eigenvalue. Second, G(E) has similar analytic
properties as the S-matrix itself. Hence the values of G{E) at the Harris eigenvalue can be
analytically continued in the complex energy plane

By writing 2@ for g(“m @ for J )_1 ng» 20d RY for (¥ ;|:151\,.))/(51.,‘.“’_l

ISN _1), we find it more convement in subsequent analysis to cast the matrices (8 =+ i.4) in
the form

(B+id) =1+ F2)Ds (22)
where
(Fe)op = gD IO RY 23)
and
1
(D:l:)aﬁ = \/_(CNﬂ 1 + ISN',_.l)aozﬁ (24)
ﬁ

Thus, we can write the resonance condition of equation (21} equivalently as

det(D+) det(l + F+)

B = a0 HETe @
More explicitly, we note that
14 g(ll}J(l)R:(tn g(IZJJ(Z)R(ﬁ) . g(lMu)J'(Mo) R(iMo}
det(l 4 Py = | 8WIVRY 14gPUORE L g@RIORRLD ) o)
gHNJORD gD JARD |y i) (e RO

Here, My denotes the number of open channels at the energy E of interest. The above
determinant is a function of various products of the elements of the matrix g, each of
which has a first-order pole at the energy £ = E,,. However, because of the form of the
residue of g (E) at E = E,, we find that ali higher-order poles except first order vanish
identically. It is not hard to show that, typically, near the energy E,, we have

g(a'xﬁl) g(alﬁz) g(mﬂm)

(@1 Bl By
g(ﬂfzﬂl) g(t!!ﬁ'z) e g(otzﬁ;n) _ ol (WE B ';))(E,u) + Uf""“""ﬁ;“'ﬁ"')(E) (27)
2CnB) QOB | glomp) #

where Uﬁ"l"""‘m'ﬁ'"'ﬂ""(E) is a function that behaves regularly at E = E,;, and the residue
¢ has the explicit value

T;: V2, e Oy Tft B2 fim

Qi F(E,) = (284)
¢ (Vl>\h§.:>um_l) (Ey, —E,NE, —E,)...(Ey,_, —E,)
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where
Ag’:,)—l.u Af\f:—l.u Ag:::)—l.u
Tt Af\f,}—l.u, Afgfz)—l.ul Af{f.:,)-m, ) (28h)
A g Ay e AR
The sum in equation (28a) is over the indices vy, v2, ..., Yu-1, €ach ranging from 1 to N,

provided that each is different from the index p. To take advantage of the properties of the
various determinants of the matrix {g®®}, we recast equation (25) in the form

_det(D, Fy) det(1 + F7)

G(E) = . (29
(E) det(D_F_) det(1 + F~") )
Now the elements of F; ! are just the ratio of such determinants. In fact,
gt -1 ouy _1yMo=t gliMo)
YHIormoi el Rl g
: -1 -1 e 14 L _Qt[? —nM gh
AR I+ FAEN = Jagp g JoRP g JORP o
= - - - w LAY
1Mo~ Q(MOU _1)Mo Q(Mﬂzl 1 Q[MoMo?
(M) Riﬂni Quiﬂoi s R;I:moj Qiﬁoi - 1t JiMg) Rf-?o’ Q“Wol
(30a)
where Mp is now the number of open channels at energy E, and
ff.ﬁ,-) — ﬂl..ot.-:m-»,:---Mu.ll..ﬂ,--xﬂm---MoJ(Eu) = Q“,'oze) (300)
while
QgtMO) - QEZH.MDJZ‘HMU)(EM)' (30(.‘)

On the other hand, the ratio of the determinants of D1 Fy in equation (29) reduces to the
simple products

det(Dy Fy) _ 1% (e + i)

det(D-F-) (i (e —isy)

(31

The above two equations give us the set {G(Ep)}if‘:, exclusively in terms of
the Harris energy eigenvalues and eigenvectors and the J-matrix basic functions
{cﬁ',f_l, cﬁ),sﬁ)_l,sﬁf }ff;t, which are involved in the formation of {Rf)}f_fl. The set
can then be analytically continued in the complex energy plane. A resonance is a zero of
the analytically continued G(E). In the next section we show how a similar analysis yields
the values of the S-matrix elements at the Harris energy eigenvalues and how the pastial

widths can be extracted from the analytically continued S-matrix elements.
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4. The partial widths

Once a resonance is identified by its complex energy ¢,, the partial widths, I',, associated
with chaonel ¢ is obtained from equation (5) as

Iy = | lim (E — Er)Scm(E)I- (32)
E—e,

In terms of previously defined functions, the S-matrix can be written as

S(E) = D;' (E)S(E)D_(E) (33)
where

S(Ey=(1+F)'Q+F.). (34)

Careful analysis of the form of the matrix resulting from the operations on the right-hand
side of equation (34) shows that the diagonal elements of the S-matrix can be written as

det(1 + Ka)

S2alB) = G+ Fy)

(33)

where K, is identical to F.. except that R_(,‘.') is replaced by R®. Also, for the same reasons

given before, we cast the above equation in the more convenient form

- det(K,) det(1 + K1)
Sea(E) = @ 36
(E) det(FL) det(1 + F") @6
The first factor is simply
det(K.) _ RY o7

det(Fy) ~ RY’

The limit value of det(1 + X!) at the Harris energy eigenvalues can be obtained by an
identical procedure as in equation (30} for det(14+- F 1y except that in the ath row the factor
R_(,‘_” is replaced by R, Combining the above relations and using the fact that the matrices
D, are diagonal, we finally obtain

(e —is$) det(1 + K7

Sea(E) = :
e (B) (@ +is©) det(1 + F;7)

(38)

Now the set {.‘5‘,,,,3,(1‘:'.',1)};‘":“=1 can be used to analytically continue the diagonal elements of the
S-matrix in the complex plane in preparation for taking the limit shown in equation (32) at
the resonance energy and the subsequent extraction of the partial widths.
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5. Analytic contipuation and search procedure

The set {G(Eu)};ff_,l, as found using the procedure outlined above, is interpolated in energy

using the point-wise rational fraction scheme of Schlessinger [8]. A function G**(E), which

has the continued fraction form

G(E\)(E—-E)ay (E-Ey)ay,
1+ 1+ 1

is required to coincide with G(E,) at the Harris eigenvalue E,,. This fixes the coefficients

{2 },":‘rf_,1 in the continued fraction as

1 [1 + (Evs1 — Ev-p)av—1 (Eygy ~— Ev)ap—a

G*¥(E)=

(39

ay

" (B, - Eu1) 1+ I+
(Eve1 — EDay
1~ [G(E/ G(Ey+1)] (40a)
and
a1 = (G(E)/ G(Ez) — 1)/(Ex - En). (40b)

The function G*(E) is now used as the analytic continuation of G(E) in the complex
energy plane.

Resonances are sought as the zeros of G*(E) in the second sheet of the complex energy
plane. Standard numerical techniques may be employed in the search effort. A preliminary
step is to evaluate the absolute value, |G*|, of G*(E) along lines of constant Im(E). At
some value of Im{E), the plot of |G*| versus Re( E} will show a minimum structure at some
value of Re(E). This is shown in figure 1(a). The process may be repeated, but this time
for |G*| versus Im(E), for the above chosen Re(E). More pronounced minimum structure
is likely to appear in the plot at a new Im(E), as shown in figure 1(£). Atany stage the point
E = (Re(E), Im(E)) may be used as a starting point for the application of the Newton—
Raphson method [12]. When the starting point is close enough to a zero of |G™*], this
method converges very quickly, as shown in table [. A resonance energy, €., is recognized
as being the energy at which |G*| is several orders of magoitide smaller than |G*| values
in its immediate neighbourhood, as shown in figures 1(c) and 1{¢). In rare occasions when
the starting energy is still far away from the resonance energy as evidenced by the non-
convergence of the Newton-Raphson method, the situation may greatly be improved by the
utilization of the Ward method [13]. This method iteratively compares the value of |G*] at
the corners of a square of a chosen side length. As the scheme converges, the side length
may be reduced 50 that the energy where a minimum of |G| occurs is approached with
higher and higher accuracy. Some experience with the use of the Ward method helps in
identifying the stage at which the energy may be successfully used as a starting point in the
application of the Newton—Raphson method. The search scheme outlined above has been
used successfully to locate the resonance energies discussed in the next section.

In a similar fashion, the set {.S(w,(E,JL)},":I‘=1 can be analytically continued in the complex
energy plane by a function S5 (E} which coincides with Sy,(E) at the Hamris energy
eigenvalues. The limiting process required to find the partial widths is essentially equivalent
to finding the derivative of S5 (E) at the chosen resonance energy €,. In practice the
derivative is evaluated numerically. Alternatively, one may analytically continue the set
{(E, - ‘-:,)S,,u,,(.E.'M)}Nc and then evalvate the result at E = ¢,. Both methods have been

=1
used and were found to yield comparable results.
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Figure 1. Implementation of the search strategy of the zeros of |G™(£)] in the complex energy
plane.

Table 1. Resonance search for the potential V(r) = 2r2e~" (the z = 0 case) using the Newton—
Raphson method starting with the initial complex energy £ = (1.23, ~0.1845). The basis size
N is 20 and the scale parameter A is 2.0.

. Re(E) Im(E) |G|

1230000000 —1.845000000 1.21E—-02
1234302733 —1.847964099 1.35E — 04
1.234316686 —1.847499617 1.72E — 08
1.234316682 —1.847499661 9.50E — 16

6. Examples
We have applied the method to the s-wave scattering by the potential
V(r) =2rle™ 41)

for the three cases where the charge z may have any of the values 0, —1 or +1. The z =0
case is known [14] to have a resonance at the energy ¢, = 1.2342 —i0.1872. We have used
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Table 2. The resonance energy, £, and total width, [, for the potential V() = 2rZe™" for
z =10, —1 and +1, scale parameter A = 2.0 and as a function of basis size N, compared to the

results of [14] in the z = 0O case, and to complex mtation calculation in the z = —1] and +1

cases,

z N E, r

0 2 1.2343 0.3695

25 1.2341 0.3745
30 1.2343 0.3744
35 12342 0.3745
From [14] 1.2342 0.3745

-1 20 0.2361 0.0062
25 0.2380 0.0056
30 0.2359 0.0057
35 0.2359 0.0057
Complex rotation 0.2359 0.0057

+1 20 1.9106 1.1062
25 1.9038 1.1282
30 1.9036 1.1258
35 1.9038 1.1244

Complex rotation 19040 1.1246

this model to illustrate the search sirategy outlined in the previous section and illustrated in
figure 1.

It is a strength of the J-matrix method of scattering that the situation when the reference
Hamiltonian Hg includes the Coulomb term (z/r) can be handled just as easily as the z =0
case. We give in table 2 the resonance parameters for the cases where z = 0, —1 and +1
as a function of basis size used. Since these models with z = —1 and +1 have not been
considered by other workers, we compare our results, using the Laguerre basis and different
N, with the complex rotation method [15].

We also apply the method to a model three-channel problem with z = 0 having an
interaction potential of the separate form

Ve = |5, V¥ (2] (42)
where
(rity) =757, (43)

The model has the potential parameters

0.1 02 0.1
Ve? = (0.2 -03 0.1 ) (44)
01 01 -10

with {) = {» = {3 = 0.5. The threshold energies are E; = 0, F; = 2.0 and 3 = 3.0.
This model may be solved exactly. It possesses a resonance of total width I' =
0.2245E — 01 occurring at E, = 3.9404. The exact associated partial widths are found
to be I'y = 0.1493E — 03, I'; = 0.1611E — 01 and '; = 0.6050E — 02. This model has
been solved by the proposed method using the oscillator basis with the same size and scale
parameter for all the three channels. Table 3 compares the results of the method with the
exact result. It is clear that the method reproduced the resonance parameters very accurately.
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Table 3. The resonance energy, £,, total width, I', and partial width for a model three-channel
prablem described in the text as a function of basis size N which has been taken as the same
for all three channels. The oscillator basts is used with A = 1.0 for all channels, The results of
the method are compared with the exact results.

N E, r [ P I3

10 39404 02228E-01 0.1496E—03  0.1614E—01  0.6004E — 02
15 3.9494 02245801 0I492E-03 O0.161IE—01  0.6050E—02
20 39404  02245E-01  01492E-03 0I61IE—01  0.6050E— 02

Exact 3.9404 0.2245E ~- 01 0.1493E - 03 0.1611E - 01 0.6050E — 02
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