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Abskac t  The 3-matrix method of scattering is used to calculate the scattering S-maeix at the 
set of energy eigenvalues of the full Hamiltonian mavix constructed tiom B finite set of square- 
integrable basis functions. The S-maeix is then malyticdly continued in the complex energy 
plane via a point-wise rational fraction scheme of Schlessinger. Numerical search techniques are 
then used to locate the poles of the S-matrix, which are identified with the resonance energies. 
Partial widths are easily calculated from the residues of the S-manix at the designated complex 
resonance energies. 

1. Introduction 

Recently, the authors introduced a simple method [I] for extracting resonance information 
from the Harris energy eigenvalues and eigenvectors [2] resulting from the diagonalization 
of the scattering Hamiltonian in a finite set of L2 bases. The method is based on the 
formalism of the J-matrix method of scattering t3-51 which finds the exact solutions to a 
model multichannel scattering potential, ?. The model potential is obtained from the given 
potential, V ,  by restricting its infinite matrix representation in a complete Lz basis to a finite 
representation. The basis chosen in each channel U is either the Laguerre basis 

In both cases, ha is a free-scale parameter, and L;(x) are the generalized Laguerre 
polynomials of order n. In terms of this basis and the given potential V .  the model potential 
? is defined as 

where { I@f))),"=a i_S the orthogonal complement to the basis { l@f)))zo in the ~ t h  channel 
in the sense that (@[+:) = (@:I@) = anm. This modelling procedure is analogous to the 
approach of the R-matrix method of scattering which models the given scattering potential 
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by a cut-off potential restricted to an inner configuration space [3]. Heller [a] has shown 
that this approximation scheme, which is ever improvable by enlarging the representation, 
does not lead to spurious resonances. Thus, the rssonances that the .I-matrix method yields 
approximate, in a well defined fashion, real resonances. 

The scheme for calculating resonance energies is based on the definition of resonances 
as the poles of the S-matrix in the second sheet of the complex energy plane. The J-matrix 
method allows the exact evaluation of the S-matrix at the Harris energy eigenvalues which 
result from the diagonalization of the full Hamiltonian in the subspace where the model 
potential is non-zero. Since the real energy axis is in the domain of analyticity of the 
S-matrix, these values can be analytically continued in the complex energy plane. Standard 
numerical search routines can then be used to locate the poles of the S-matrix, which are 
identified as the complex resonance energies. E , ,  r = 1, 2.. . . . Usually, each resonance is 
parametrized by E,, the real resonance position, and r, the resonance total width, in the 
following way: 
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. I  

2 
E ,  = E, - 1-. (4) 

For each resonance, the partial width r,, associated with each channel U, can be extracted 
from the residues of the S-matrix at the energy c I .  This is possible because the S-matrix 
has the form 

In the neighbourhood of the 6, [7]. Here S% is the background part of the S-matrix which 
behaves regularly at E = 4, and 0, is a real phase. 

The purpose of this paper is to show how to calculate the S-matrix at the Harris energy 
eigenvalues and, subsequently, how to analytically continue it in the complex energy plane. 
This turns out to be a non-trivial problem since the S-matrix is a product of two operators, 
one having a zero and the other having a pole at the Hanis energy eigenvalues. In section 2 
we use the J-matrix method of scattering to derive the general expression for the S-matrix. 
In section 3 we state a sufficient condition for the energy to be a resonance energy. This 
turns out to be the vanishing of a function, G ( E ) ,  derivable from the determinant of the 
S-matrix. We find the values of G(E) at the Harris energy eigenvalues. In section 4 we 
show how to calculate the diagonal elements of the multichannel S-matrix at the Hanis 
eigenvalues and how to derive from these elements the partial widths for each resonance. 
In section 5 we explain how to apply the rational fraction scheme of Schlessinger [8] to 
analytically continue G ( E )  and the diagonal elements of the S-matrix in the complex plane. 
We also explain how to use some numerical search techniques to locate resonances in the 
complex energy plane. In the last section we give results of the application of the proposed 
method to finding the resonance energy and partial widths for model one- and three-channel 
scattering problems. 

2. The S-matrix in the scattering region 

We consider the scattering of a structureless spinless particle by a target with M internal 
states labelled by the threshold energies E l ,  E2- . . . , EM. We assume that the given 
scattering potential, V@, is short range. We also assume that the reference Hamiltonian of 
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the projectile, Ho, may include, in addition to the lth partial wave kinetic energy operator, 
the Coulomb term ( z / r ) ,  that is, 

1 d2 1 ( 1 + 1 )  z + -. Ho = + - 
2drz 2rZ r 

Thus, the multichannel Schrodinger equation for the given scattering problem is 

The matrix representation of the operator 

J(@)  = Ho - ( E  - E,)  (8 )  

is hidiagonal in the Laguerre basis if we choose U = 21 + 1, and in the oscillator basis if 
we choose z = 0 and U = 1 + $. Therefore, the Fourier-like coefficients (s,?)."=O of the 
expansion of the sine-like eigenvector of HO satisfy the three-term recursion relation 

(9) (4 (U) (4 (e) + J ( @ )  (d - 0 
J","-lS"-l + J n . A  n.niISn+l - 

for n 2 1 and the initial two-term recursion relation 

Here 

J $ ( E )  = (4:' I J")(E) I&)). ( 1 1 )  

The explicit solutions for the above recursion relations are already known [3,5]. Similarly, it 
has been shown [SI that a second solution (c$))z+ of equation ( 8 )  with the initial condition 

are the coefficients of a vector that behaves asymptotically cosine-like. Here W is the 
Wronskian of the regular and irregular solution of the orth channel potential-free Schrodinger 
equation. The coefficients { cp ) ,  @]E0 have already been found explicitly and have been 
tabulated [5,9].  

Equipped with these coefficients, we may find the exact solution to the Schrodinger 
equation (7) but with ?a, as given by equation (3), replacing V@. The vector l@pa(E)), 
which describes the projectile entering the scattering region in channel or with momentum k, 
and exiting the region in channel fi with momentum kp. can be expanded in the p-channel 
basis M?)))zo as 

This suggested solution resembles that of the R-matrix method in that outside the range of 
the cut-off potential the wavefunction is a linear combination of the sine-like and cosine-like 
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solutions. Therefore, the Rp. is j u t  the reactance matrix from which the S-matrix can be 
constructed using the relation 

H A  Yamani and M S Abdelmonem 

S ( E )  = (1 - ii)- '(I + ili) (14) 

where .@ is the open-channel part of the reactance matrix R. Broad and Reinhardt [IO, 1 I] 
have shown that i? is a solution of the equation 

ai = -8 (15) 

where d and d are the open part of the matrices A and B which have the explicit forms 

The quantity g is the inverse of the total Hamiltonian matrix, and gy:) , , * -  ,(E) is the 
(Np - 1, N. - 1) element of the ( 0 , ~ )  submatrix of g. More explicitly, this element can 
be written as 

where E, is a Harris energy eigenvalue and 

is the associated Harris energy eigenvector. Here, N, = E,"=, N, is the dimension of the 
Hamiltonian matrix. This is the same as the total number of L2 functions used to diagonalize 
the scattering Hamiltonian [a]. It i,s now slmightfonvard to write the scattering S-matrix in 
terms of the two matrices A and B as 

s = (L? + id)-'@ - id). (19) 

This equation is valid for real energies above the lowest channel threshold. In partifular, S 
has a well defined value even at the Harris energy eigenvalue despite the fact that A and f? 
are both singular at the Hanis energy eigenvalue. This problem is solved in the following 
sections. 

3. The condition for resonance 

Each element of the S-matrix is singular at the complex resonance energy E,. 
equation (19) it is clear that a necessary condition for resonance is that 

From 

det(L? + i d )  = 0. (20) 
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Since the two operators ( 6 f i d )  cannot both vanish at a point in the complex energy space, 
a sufficient condition for resonance is 

g ( Z ' ) J ( l ) R f )  1 +g(zz)J(z)RF) ,,, g@Md J ( M d  RI'd 
det(1 + Fh) = ... . . .  ... ... 

det(6 + i a )  
det(6 - i j )  

G(E) = = O  at E =E,. 

. (26) 

This form for the condition for resonance has two favourable properties. First, G(E) has 
a well defined value at the Harris energy eigenvalue. Second, G ( E )  has similar analytic 
properties as the S-matrix itself. Hence the values of G(E) at the Harris eigenvalue can be 
analyticdly continued in the complex energy plane. 

By writing g(@) for g ~ ~ ~ l , N f l - l ,  J @ )  for J$)-I ,Np,  and RY)  for (c$j &is$))/(c$& f 
is$)-J, we find it more convenient in subsequent analysis to cast the matrices (6 f iA) in 
the form 

(6 & i.A) = (1 + F*)D* 

( F d q ~  = g (OB) J @ ) R Y )  

(22) 

where 

(23) 

and 

g(a,&) 

... 
g("Bo g(4B2) . , , 

. . . . . . . . .  

Thus, we can write the resonance condition of equation (21) equivalently as 

Q('ZI...%. I... m 
YEP) + u p . . . n " . B 4 , ( E )  (27) - - 

( E ,  - E )  

= O  at E = tr. 
det(D+) det(1 + F+) 
det(D-) det(1 + F-) G(E) = - 
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where 
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(am ) 
' . '  I ... ... ... 

(U>) C) 
'Na,-I,vm.~ 'Nu2-I,vm.t " '  'Num-I,um.p 

The sum in equation (28a) is over the indices V I ,  U?,  . . . , um-,, each ranging from 1 to Nc 
provided that each is different from the index N. To take advantage of the properties of the 
various determinants of the matrix {g("@)), we recast equation (25) in the form 

det(D+F+) det(1 + F;') 
det(D-F-) det(1 + F:')' 

Now the elements of Fil  are just the ratio of such determinants. In fact, 

G(E) = 

where MO is now the number of open channels at energy E ,  and 

( E p )  = QP) ( 3 0 ~  Qjp'B"= ( I 2  ..Ll.-, air, ... uo.12 .. 8,-18,+, ... Mg) 
Q P  

while 

(304 (MO) = (17. M o o . 1 2 . . u o ) ( ~ P ) ,  
QP Q P " '  

On the other hand, the ratio of the determinants of DiFi in equation (29) reduces to the 
simple products 

The above two equations give us the set {G(EP)}F=l exclusively in terms of 
the Harris energy eigenvalues and eigenvectors and the J-matrix basic functions 

can then be analytically continued in the complex energy plane. A resonance is a zero of 
the analytically continued G(E). In the next section we show how a similar analysis yields 
the values of the $-matrix elements at the Harris energy eigenvalues and how the partial 
widths can be extracted from the analytically continued S-matrix elements. 

$2, she 4 Mm which are involved in the formation of {R!f))~Ll. The set 
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4. The partial widths 

535 1 

Once a resonance is identified by its complex energy E , ,  the partial widths, r,, associated 
with channel 01 is obtained from equation (5) as 

r. = I lim ( E  - 6,)Snu(E)I.  (32) E--*(, 

In terms of previously defined functions, the S-matrix can be written as 

S ( E )  = D;'(E)3(E)D-(E) (33) 

where 

3 ( E )  = (1 + F+)-'(l + E ) .  (34) 

Careful analysis of the form of the mahix resulting from the operations on the right-hand 
side of equation (34) shows that the diagonal elements of the ,?-matrix can be written as 

where K, is identical to F+ except that A!,? is replaced by R"'. Also, for the same reasons 
given before, we cast the above equation in the more convenient form 

The first factor is simply 

det(K,) R?' 
det(F+) A,")' 
-- -- (37) 

The limit value of det(1 + K;') at the Harris energy eigenvalues can be obtained by an 
identical procedure as in equation (30) for det(l+ F;') except that in the ryth row the factor 
R,") is replaced by R?). Combining the above relations and using the fact that the matrices 
D* are diagonal, we finally obtain 

Now the set (S&Jl,,)]:=l can be used to analytically continue the diagonal elements of the 
S-matrix in the complex plane in preparation for taking the limit shown in equation (32) at 
the resonance energy and the subsequent extraction of the partial widths. 
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5. Analytic continuation and search procedure 

The set [G(Ee)]F=l,  as found using the procedure outlined above, is interpolated in energy 
using the point-wise rational fraction scheme of Schlessinger (81. A function GaC(E),  which 
has the continued fraction form 

is required to coincide with G(EJ  at the Hanis eigenvalue En. This fixes the coefficients 
(Q"}::, in the continued fraction as 

(E,+I - Ev-l)av-l W,+I - E,-z)a,-z 
a, = 

[ I +  I+ I+ (E" - E " d  

and 

Q I  = (G(Ei)/G(Ed - 1J/(Ez - E d .  ( 4 0 ~  

The function GaC(E) is now used as the analytic continuation of G ( E )  in the complex 
energy plane. 

Resonances are sought as the zeros of P ( E )  in the second sheet of the complex energy 
plane. Standard numerical techniques may be employed in the search effort. A preliminary 
step is to evaluate the absolute value, IGaCI, of GaC(E) along lines of constant Im(E) .  At 
some value of Im(E), the plot of lGJcl versus Re(E) will show a minimum structure at some 
value of Re(E). This is shown in figure l(a). The process may be repeated, but this time 
for IG"I versus Im(E), for the above chosen Re(E). More pronounced minimum structure 
is likely to appear in the plot at a new Im(E),  as shown in figure l (b ) .  At any stage the point 
E = (Re(E), Im(E))  may be used as a starting point for the application of the Newton- 
Raphson method [12].  When the starting point is close enough to a zero of IG"I, this 
method converges very quickly, as shown in table 1. A resonance energy, E,,  is recognized 
as being the energy at which lG"l is several orders of magnitude smaller than lG"l values 
in its immediate neighbourhood, as shown in figures l(c) and l ( d ) .  In rare occasions when 
the starting energy is still far away from the resonance energy as evidenced by the non- 
convergence of the Newton-Raphson method, the situation may greatly be improved by the 
utilization of the Ward method [13]. This method iteratively compares the value of lGacl at 
the comers of a square of a chosen side length. As the scheme converges, the side length 
may be reduced so that the energy where a minimum of lGaCl occurs is approached with 
higher and higher accuracy. Some experience with the use of the Ward method helps in 
identifying the stage at which the energy may be successfully used as a starting point in the 
application of the Newton-Raphson method. The search scheme outlined above has been 
used successfully to locate the resonance energies discussed in the next section. 

In a similar fashion, the set (S,u(Ee)]:=, can be analytically continued in the complex 
energy plane by a function S&(E) which coincides with &.(E) at the Harris energy 
eigenvalues. The limiting process required to find the partial widths is essentially equivalent 
to finding the derivative of at the chosen resonance energy c,. In practice the 
derivative is evaluated numerically. Alternatively, one may analytically continue the set 
[ (Ee  - .5,)Sua(Ee)]:=1 and then evaluate the result at E = c,. Both methods have been 
used and were found to yield comparable results. 
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Figure 1. Implementation of the search strategy of the zeros of IG"(E)] in the complex energy 
plane. 

Table 1. Resonance search for the potentid V(r) = 2r2e-' (the z = 0 case) using the Newton- 
Raphson method starting with the initial complex energy E = (1.23. -0.1845). The basis size 
N is 20 and Lhe scale parameter h is 2.0. 

W E )  W E )  lG=Cl 
1.230000000 -1.845000000 1.21E- 02 
1.234302733 -1.847964099 1.35E- 04 
1.234316686 -1.847499617 1.72E-08 
1.224316682 -1.847499661 9.WE- 16 

6. Examples 

We have applied the method to the s-wave scattering by the potential 

v(r) = 2r2e-' (41) 

for the three cases where the charge z may have any of the values 0, -1 or +l. The z = 0 
case is known [14] to have a resonance at the energy E, = 1.2342- i0.1872. We have used 
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Table 2. The monance energy. E,. and tolal width, r, far the potentiat V ( r )  = 2rze-' for 
L = 0, - 1  and +I. scale parameter .I = 2.0 and as a function of basis size N. compared to the 
resulls of U41 in the z = 0 case, and to compley rotation calculation in the L = - I  and + I  
cases. 

z N E, r 
0 20 1.2343 0.3695 

25 1.2341 0.3745 
30 1.2343 0.3744 
35 1.2342 0.3745 
From [I41 1.2342 0.3745 

- I  U] 0.2361 0.0062 
25 0.2380 0.0056 
30 0.2359 0.0057 
35 0.2359 0.0057 
Complex romtion 0.2359 0.0057 

+ I  U) 1.9106 1,1062 
25 1.9038 1,1282 
30 1.9036 1.1258 
35 1.9038 1.1244 
Complex rotation 1.9040 1.1246 

this model to illustrate the search strategy outlined in the previous section and illustrated in 
figure 1. 

It is a strength of the J-matrix method of scattering that the situation when the reference 
Hamiltonian HO includes the Coulomb term ( z / T )  can be handled just as easily as the z = 0 
case. We give in table 2 the resonance parameters for the cases where z = 0. -1  and +1 
as a function of basis size used. Since these models with z = -1 and + 1  have not been 
considered by other workers, we compare our results, using the Laguerre basis and different 
N ,  with the complex rotation method 1151. 

We also apply the method to a model threechannel problem with z = 0 having an 
interaction potential of the separate form 

where 

The model has the potential parameters 

0.1 0.1 -1.0 

with (1 = 
It possesses a resonance of total width r = 

0.224532. - 01 occurring at E,  = 3.9404. The exact associated partial widths are found 
to be rI = 0.1493E - 03, rz = 0.1611E - 01 and r3 = 0.6050E - 02. This model has 
been solved by the proposed method using the oscillator basis with the same size and scale 
parameter for all the three channels. Table 3 compares the results of the method with the 
exact result. It is clear that the method reproduced the resonance parameters very accurately. 

= (3 = 0.5. The threshold energies are E1 = 0, E2 = 2.0 and E3 = 3.0. 
This model may be solved exactly. 
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Table 3. The resonance energy, E,, total width, r, and panial width for a model three-channel 
problem described in the text as a function of basis size N which has been laken as the same 
for 011 three channels. The oscillator basis is used with i = 1.0 for all channels. The results of 
the method are compared with the exact wults. 

N E, r rl rl r3 
10 3.9404 0.2228E-01 0.1496E-03 0.1614E-01 0.6004E-02 
15 3.9494 0.22453 - 01 0.14928 - 03 0.161 1E - 01 0.6050E - 02 
20 3.9404 0.22453 - 01 0.1492E - 03 0.161 1E - 01 0.6050E - 02 
Exact 3.9404 0.22453-01 0.14938-03 0.1611E-01 0.605OE-02 
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